Potential new target for cancer found

Armen Hareyan's picture
Advertisement

By bypassing a well-known gene implicated in almost one-third of all cancers and instead focusing on the protein activated by the gene, Duke University Medical Center researchers believe they may have found a new target for anti-cancer drugs.

In experiments with human cells and animal models, the researchers studied the gene known as "Ras," which is integral in normal cell growth. When this gene is mutated and becomes overactive, it can lead to the unregulated proliferation of cells that is the hallmark of tumor formation.

Advertisement

The ras gene, known as an oncogene when it is in this mutated state, has been implicated in several different cancers, including those of the pancreas and lungs. To date, efforts at blocking or turning off ras have proven ineffective. Pancreatic cancer has been shown to have the strongest link to the ras oncogene, and it is also one of the hardest cancers to treat, with few patients alive five years after diagnosis, researchers said.

"Since it has been so difficult to target the ras gene itself with drugs, we tried to determine if something that ras activates could be a possible target for a drug or therapy," said Christopher Counter, Ph.D., associate professor of pharmacology and cancer biology and senior member of the research team. "We found a specific target that could be susceptible to drugs, and if these findings are proven true in human trials, we could have a new way of treating ras-dependent cancers."

The results of the Duke experiments were published July 15, 2007, in the journal Genes & Development. Brooke Ancrile, a graduate student in Counter

Share this content.

If you liked this article and think it may help your friends, consider sharing or tweeting it to your followers.
Advertisement