Study Finds Nerve Regeneration Possible in Spinal Cord Injuries

Armen Hareyan's picture
Advertisement

Spinal Cord Injury Recovery

A team of scientists at UCSF has made a critical discovery that may help in the development of techniques to promote functional recovery after a spinal cord injury.

By stimulating nerve cells in laboratory rats at the time of the injury and then again one week later, the scientists were able to increase the growth capacity of nerve cells and to sustain that capacity. Both factors are critical for nerve regeneration.

The study, reported in the Nov. 15 issue of the Proceedings of the National Academy of Sciences, builds on earlier findings in which the researchers were able to induce cell growth by manipulating the nervous system before a spinal cord injury, but not after.

Key to the research is an important difference in the properties of the nerve fibers of the central nervous system (CNS), which consists of the brain and spinal cord, and those of the peripheral nervous system (PNS), which is the network of nerve fibers that extends throughout the body.

Advertisement

Nerve cells normally grow when they are young and stop when they are mature. When an injury occurs in CNS cells, the cells are unable to regenerate on their own. In PNS cells, however, an injury can stimulate the cells to regrow. PNS nerve regeneration makes it possible for severed limbs to be surgically reattached to the body and continue to grow and regain function.

Regeneration occurs because PNS cell bodies are sensitive to damage to their nerve processes, and they react by sending out a signal that triggers the nerve fibers to regrow, explains Allan Basbaum, senior study author and chair of the UCSF Department of Anatomy. "Apparently this communication doesn't take place within the CNS."

Scientists do not yet know the biochemical cause for the difference, he adds.

The traditional scientific approach in efforts to enhance CNS regeneration is to manipulate the biochemical environment of the cells at the site of the spinal cord injury, according to Basbaum. Instead of this type of investigation, Basbaum's team used nervous system manipulation techniques to apply the principles of PNS cell growth capability to CNS cells.

The researchers took advantage of an unusual class of nerve fibers that has both a PNS and a CNS branch. Previously, the researchers had shown in animal studies that an injury made to the peripheral branch prior to a spinal cord injury provided the essential communication signal that enabled the CNS branch to grow. But this only worked if the PNS injury

Share this content.

If you liked this article and think it may help your friends, consider sharing or tweeting it to your followers.
Advertisement