Researchers Explore Functional Landscape Of Human Genome

Armen Hareyan's picture
Advertisement

Human Genome

National Human Genome Research Institute announced grants totaling more than $80 million over the next four years to expand the ENCyclopedia Of DNA Elements (ENCODE) project, which in its pilot phase yielded provocative new insights into the organization and function of the human genome.

"Based on ENCODE's early success, we are moving forward with a full-scale initiative to build a parts list of biologically functional elements in the human genome," said NHGRI Director Francis S. Collins, M.D., Ph.D. "The ENCODE pilot, which looked at just 1 percent of the human genetic blueprint, produced findings that are reshaping many long-held views about our genome. ENCODE's effort to survey the entire genome will uncover even more exciting surprises, providing us with a more complete picture of the biological roots of human health and disease."

Advertisement

While the sequencing of the human genome was a major scientific achievement, it was just the first step toward the ultimate goal of using genomic information to diagnose, treat and prevent disease. In recent years, researchers have made major strides in using DNA sequence data to help find genes, which are the parts of the genome that code for proteins. The protein-coding component of these genes, however, makes up just a small fraction of the human genome -- about 1.5 percent. There is strong evidence that other parts of the genome have important functions, but very little information exists about where these other functional elements are located and how they work. The ENCODE project aims to address this critical goal of genomics research.

In June, the ENCODE research consortium published a set of landmark papers in the journals Nature and Genome Research that found the organization, function and evolution of the genome to be far more complicated than most had suspected. For example, while researchers have traditionally focused on studying genes and their associated proteins, the ENCODE data indicate the genome is a very complex, interwoven network in which genes are just one of many types of DNA sequences with functional impact.

"We learned many valuable lessons from the ENCODE pilot project. Among them was the importance of scientific teamwork," said Elise A. Feingold, Ph.D., program director for ENCODE in NHGRI's Division of Extramural Research. "Following the pilot's strong example of multi-disciplinary collaboration, we are confident that the scaled-up ENCODE team will succeed in its quest to build a comprehensive catalog of the components of the human genome that are crucial to biological function."

In addition to the research grants to support expansion of the ENCODE project, NHGRI also announced awards today for two pilot-scale projects, an ENCODE data coordination center, and six projects to develop novel methods and technologies aimed at helping the ENCODE project achieve its goals.

"As was the case for the Human Genome Project and the ENCODE pilot, all of the data generated by the full-scale ENCODE project will be deposited into public databases as soon as they are experimentally verified," said Peter Good. Ph.D., program director for genome informatics in NHGRI's Division of Extramural Research. "Free and rapid access to this data will enable researchers around the world to pose new questions and gain new insights into how the human genome functions."

Share this content.

If you liked this article and think it may help your friends, consider sharing or tweeting it to your followers.
Advertisement