How Brain Pathways Control Body Weight

Armen Hareyan's picture
Advertisement

Obesity and Brain

A study led by a scientific team at Beth Israel Deaconess Medical Center (BIDMC) provides another important step in our understanding of the critical role that the brain's molecular pathways play in the development of obesity and related disorders.

The findings, reported in the Nov. 4 issue of the journal Cell, demonstrate for the first time that the neuronal pathways that help to keep body weight stable diverge at the melanocortin-4 receptor (MC4R) to regulate either food intake or energy expenditure.

This unexpected discovery helps to extend the understanding of the complex neurocircuitry behind body weight control, an endeavor that began more than a decade ago with the identification of the leptin hormone and which has been growing steadily ever since.

"Maintaining a stable body weight is a delicate balancing act between the amount of food eaten versus the number of calories burned," says Bradford B. Lowell, MD, PhD, of BIDMC's department of endocrinology, diabetes and metabolism who, together with Joel K. Elmquist, DVM, PhD, served as co-senior author of the study. "The brain controls both food intake and calories expended with the purpose of keeping body weight stable. When something goes wrong with this process, obesity results. The findings of this new research provide us with more precise information about the neuronal pathways regulating this balance."

Body weight maintenance can be viewed as an intricate process made up of three basic elements, say Lowell and Elmquist, both of whom are also associate professors of medicine at Harvard Medical School (HMS). In the first, the brain receives sensory input from the body (including information provided by circulating hormones such as leptin and ghrelin and from fuels such as glucose and fatty acids). It then integrates this sensory information with cues it has received from the outside world (such as aromas and other enticements) along with information gathered from the organism's emotional state.

Advertisement

Finally, they explain, the brain makes appropriate alterations in food intake and energy expenditure in order to maintain "energy balance" and prevent obesity. Among the proteins that have been identified as being critical to this process is the receptor protein MC4R.

"Scientists have known that by activating MC4Rs, body weight can be reduced," explains the study's lead author Nina Balthasar, PhD, a member of Lowell's laboratory and an instructor in medicine at HMS. In fact, she adds, research has shown that when all MC4 receptors are removed in gene knockout mice, the animals become morbidly obese. This process is important in people as well, because humans with defective MC4 receptors also become obese.

In this new study Balthasar and her coauthors set out to identify the exact groups of neurons responsible for producing these important effects of MC4 receptors.

"We knew that MC4Rs were located throughout the brain and that they were responsible for a number of functions. What we didn't know was whether MC4Rs in one specific region regulated energy balance, or whether this function was distributed throughout the brain." Furthermore, she adds, if indeed more than one area of the brain were involved in maintaining stable body weight, the authors wanted to learn whether the control of food intake and energy expenditure were tracking together, or whether there was a divergence such that one MC4R site was controlling food intake and another site was controlling energy expenditure.

Using a novel genetic engineering technique, the scientists generated MC4R deficient mice in which the MC4R could be selectively reactivated. This allowed them to manipulate gene expression in a small subpopulation of neurons.

With this specialized technique, Balthasar discovered that the receptors in two specific areas of the brain

Share this content.

If you liked this article and think it may help your friends, consider sharing or tweeting it to your followers.
Advertisement