'Smart Gene Therapy' Protects Against Damage from Heart Attack

Advertisement
2005-03-01 16:21

Heart Attack

Early intervention with a novel kind of "smart gene therapy" might effectively prevent the organ damage commonly suffered by heart attack victims, suggests a new animal study by researchers at Brigham and Women's Hospital in Boston and Duke University Medical Center. The therapy combines a therapeutic gene with a genetic "sensor" that recognizes and responds to the oxygen deprivation that follows the reduced blood flow, or ischemia, from coronary artery disease and heart attack.

As soon as the oxygen declines, the sensor turns on the therapeutic gene, thereby protecting the heart. In addition to its potential for patients with heart disease, the strategy might also prove useful for any condition in which tissues are susceptible to loss of blood supply, including stroke, shock, trauma and sepsis, the researchers said.

When administered to rat hearts several weeks before ischemia, the designer gene combination protected the heart from much of the damage that may weaken the organ and lead to failure, according to the researchers. Their report will appear in a forthcoming issue of Proceedings of the National Academy of Sciences and in the journal's online edition the week of Aug. 2, 2004.

The finding marks the first time a therapeutic gene complete with a built-in sensor that allows the gene to respond immediately to the condition it treats has been shown to work, said Victor J. Dzau, M.D., chancellor of health affairs at Duke University and an active physician-scientist at Duke. Such a therapy could offer a significant advance over available methods for treating heart patients, which are limited in their ability to provide treatment in the narrow window of time before irreversible heart damage occurs, he said. The work, led by Dzau at Brigham and Women's Hospital prior to his move to Duke in July, was supported by the National Institutes of Health and the Edna Mandel Foundation.

"While drugs that can protect heart muscle are available, most patients barely make it to the hospital in time to take advantage of them," Dzau said. "This smart gene therapy could be administered preemptively to high- risk patients months before they develop a heart attack to provide them with long-term protection from ischemic injury. The minute this gene is switched on following a loss of blood flow, levels of the therapeutic protein rise rapidly, providing near-complete protection."

Pages

Advertisement
Subscribe to EmaxHealth on YouTube